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Overview

° Expressing Boolean functions

° Relationships between algebraic equations, symbols, 
and truth tables

° Simplification of Boolean expressions

° Minterms and Maxterms

° AND-OR representations
• Product of sums

• Sum of products



Boolean 
Functions

° Boolean algebra deals with binary variables and 
logic operations.

° Function results in binary 0 or 1
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Boolean 
Functions

° Boolean algebra deals with binary variables and 
logic operations.

° Function results in binary 0 or 1
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We will learn how to transition between equation, 
symbols, and truth table.
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Representation Conversion

° Need to transition between boolean expression, 
truth table, and circuit (symbols).

° Converting between truth table and expression is 
easy.

° Converting between expression and circuit is 
easy. 

° More difficult to convert to truth table.

Truth
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Expression



Truth Table to Expression

° Converting a truth table to an expression
• Each row with output of 1 becomes a product term

• Sum product terms together.
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Any Boolean Expression can be 
represented in sum of products form!



Equivalent Representations of 
Circuits

° All three formats are equivalent

° Number of 1’s in truth table output column equals AND 
terms for Sum-of-Products (SOP)
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Reducing Boolean Expressions

° Is this the smallest possible implementation of 
this expression?  No!

° Use Boolean Algebra rules to reduce complexity 
while preserving functionality.

° Step 1: Use Theorum 1 (a + a = a)

• So xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz

° Step 2: Use distributive rule a(b + c) = ab + ac
• So xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’)

° Step 3: Use Postulate 3 (a + a’ = 1)
• So xy(z + z’) + yz(x + x’) = xy.1 + yz.1

° Step 4: Use Postulate 2 (a . 1 = a)
• So xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz 

G = xyz + xyz’ + x’yz



Reduced Hardware 
Implementation

° Reduced equation requires less hardware!

° Same function implemented!

x y z

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz = xy + yz

G

x x

x x



Minterms and Maxterms

° Each variable in a Boolean expression is a literal

° Boolean variables can appear in normal (x) or 
complement form (x’)

° Each AND combination of terms is a minterm

° Each OR combination of terms is a maxterm

        For example:
          Minterms

x    y    z          Minterm
0    0    0        x’y’z’    m0   

0    0    1        x’y’z     m1

…
1    0    0        xy’z’     m4

…
1    1    1        xyz       m7

        For example:
          Maxterms

x    y    z          Maxterm
0    0    0        x+y+z     M0   

0    0    1        x+y+z’    M1

…
1    0    0        x’+y+z    M4

…
1    1    1        x’+y’+z’   M7



Representing Functions with Minterms

° Minterm number same as row position in truth table 
(starting from top from 0)

° Shorthand way to represent functions
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Complementing Functions

° Minterm number same as row position in truth table 
(starting from top from 0)

° Shorthand way to represent functions

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G’ = (xyz + xyz’ + x’yz)’ =  

G’
1
1
1
0
1
1
0
0

Can we find a simpler representation?



Complementing Functions

° Step 1: assign temporary names

• b + c -> z

• (a + z)’ = G’

° Step 2: Use DeMorgans’ Law
• (a + z)’ = a’ . z’ 

° Step 3: Resubstitute (b+c) for z

• a’ . z’ = a’ . (b + c)’ 

° Step 4: Use DeMorgans’ Law

• a’ . (b + c)’ = a’ . (b’. c’)

° Step 5: Associative rule
• a’ . (b’. c’) = a’ . b’ . c’  

G’ = (a + b + c)’ 

G = a + b + c 

G’ = a’ . b’ . c’ = a’b’c’ 

G = a + b + c 



Complementation Example

° Find complement of F = x’z + yz
• F’ = (x’z + yz)’ 

° DeMorgan’s
• F’ = (x’z)’ (yz)’

° DeMorgan’s
• F’ = (x’’+z’)(y’+z’)

° Reduction -> eliminate double negation on x
• F’ = (x+z’)(y’+z’) 

This format is called product of sums



Conversion Between Canonical Forms

° Easy to convert between minterm and maxterm 
representations

° For maxterm representation, select rows with 0’s
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Representation of Circuits

° All logic expressions can be represented in 2-
level format

° Circuits can be reduced to minimal 2-level 
representation

° Sum of products representation most common in 
industry.



Summary

° Truth table, circuit, and boolean expression formats 
are equivalent

° Easy to translate truth table to SOP and POS 
representation

° Boolean algebra rules can be used to reduce circuit 
size while maintaining function

° All logic functions can be made from AND, OR, and 
NOT

° Easiest way to understand: Do examples!

° Next time: More logic gates!
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