
NEC 304

STLD

Lecture 6

More Boolean Algebra

Rajeev Pandey

Department Of ECE

rajeevvce2007@gmail.com

Overview

° Expressing Boolean functions

° Relationships between algebraic equations, symbols,
and truth tables

° Simplification of Boolean expressions

° Minterms and Maxterms

° AND-OR representations
• Product of sums

• Sum of products

Boolean
Functions

° Boolean algebra deals with binary variables and
logic operations.

° Function results in binary 0 or 1

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

F
0
0
0
0
1
0
1
1 F = x(y+z’)

x
y

z
z’

y+z’ F = x(y+z’)

Boolean
Functions

° Boolean algebra deals with binary variables and
logic operations.

° Function results in binary 0 or 1

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

xy
0
0
0
0
0
0
1
1

x

y

z

G = xy +yz

yz

xy

We will learn how to transition between equation,
symbols, and truth table.

yz
0
0
0
1
0
0
0
1

G
0
0
0
1
0
0
1
1

Representation Conversion

° Need to transition between boolean expression,
truth table, and circuit (symbols).

° Converting between truth table and expression is
easy.

° Converting between expression and circuit is
easy.

° More difficult to convert to truth table.

Truth
Table

Circuit Boolean
Expression

Truth Table to Expression

° Converting a truth table to an expression
• Each row with output of 1 becomes a product term

• Sum product terms together.

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

xyz + xyz’ + x’yz

Any Boolean Expression can be
represented in sum of products form!

Equivalent Representations of
Circuits

° All three formats are equivalent

° Number of 1’s in truth table output column equals AND
terms for Sum-of-Products (SOP)

x y z

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G

x x x

x x
x

x
x x

Reducing Boolean Expressions

° Is this the smallest possible implementation of
this expression? No!

° Use Boolean Algebra rules to reduce complexity
while preserving functionality.

° Step 1: Use Theorum 1 (a + a = a)

• So xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz

° Step 2: Use distributive rule a(b + c) = ab + ac
• So xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’)

° Step 3: Use Postulate 3 (a + a’ = 1)
• So xy(z + z’) + yz(x + x’) = xy.1 + yz.1

° Step 4: Use Postulate 2 (a . 1 = a)
• So xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz

G = xyz + xyz’ + x’yz

Reduced Hardware
Implementation

° Reduced equation requires less hardware!

° Same function implemented!

x y z

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz = xy + yz

G

x x

x x

Minterms and Maxterms

° Each variable in a Boolean expression is a literal

° Boolean variables can appear in normal (x) or
complement form (x’)

° Each AND combination of terms is a minterm

° Each OR combination of terms is a maxterm

 For example:
 Minterms

x y z Minterm
0 0 0 x’y’z’ m0

0 0 1 x’y’z m1

…
1 0 0 xy’z’ m4

…
1 1 1 xyz m7

 For example:
 Maxterms

x y z Maxterm
0 0 0 x+y+z M0

0 0 1 x+y+z’ M1

…
1 0 0 x’+y+z M4

…
1 1 1 x’+y’+z’ M7

Representing Functions with Minterms

° Minterm number same as row position in truth table
(starting from top from 0)

° Shorthand way to represent functions

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G = m7 + m6 + m3 = Σ(3, 6, 7)

Complementing Functions

° Minterm number same as row position in truth table
(starting from top from 0)

° Shorthand way to represent functions

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G’ = (xyz + xyz’ + x’yz)’ =

G’
1
1
1
0
1
1
0
0

Can we find a simpler representation?

Complementing Functions

° Step 1: assign temporary names

• b + c -> z

• (a + z)’ = G’

° Step 2: Use DeMorgans’ Law
• (a + z)’ = a’ . z’

° Step 3: Resubstitute (b+c) for z

• a’ . z’ = a’ . (b + c)’

° Step 4: Use DeMorgans’ Law

• a’ . (b + c)’ = a’ . (b’. c’)

° Step 5: Associative rule
• a’ . (b’. c’) = a’ . b’ . c’

G’ = (a + b + c)’

G = a + b + c

G’ = a’ . b’ . c’ = a’b’c’

G = a + b + c

Complementation Example

° Find complement of F = x’z + yz
• F’ = (x’z + yz)’

° DeMorgan’s
• F’ = (x’z)’ (yz)’

° DeMorgan’s
• F’ = (x’’+z’)(y’+z’)

° Reduction -> eliminate double negation on x
• F’ = (x+z’)(y’+z’)

This format is called product of sums

Conversion Between Canonical Forms

° Easy to convert between minterm and maxterm
representations

° For maxterm representation, select rows with 0’s

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G = m7 + m6 + m3 = Σ(3, 6, 7)

G = M0M1M2M4M5 = Π(0,1,2,4,5)

G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’)

Representation of Circuits

° All logic expressions can be represented in 2-
level format

° Circuits can be reduced to minimal 2-level
representation

° Sum of products representation most common in
industry.

Summary

° Truth table, circuit, and boolean expression formats
are equivalent

° Easy to translate truth table to SOP and POS
representation

° Boolean algebra rules can be used to reduce circuit
size while maintaining function

° All logic functions can be made from AND, OR, and
NOT

° Easiest way to understand: Do examples!

° Next time: More logic gates!

	NEC 304 STLD Lecture 6 More Boolean Algebra
	Overview
	Boolean Functions
	Slide 4
	Representation Conversion
	Truth Table to Expression
	Equivalent Representations of Circuits
	Reducing Boolean Expressions
	Reduced Hardware Implementation
	Minterms and Maxterms
	Representing Functions with Minterms
	Complementing Functions
	Slide 13
	Complementation Example
	Conversion Between Canonical Forms
	Representation of Circuits
	Summary

