

# STLD

# Lecture 6

# More Boolean Algebra

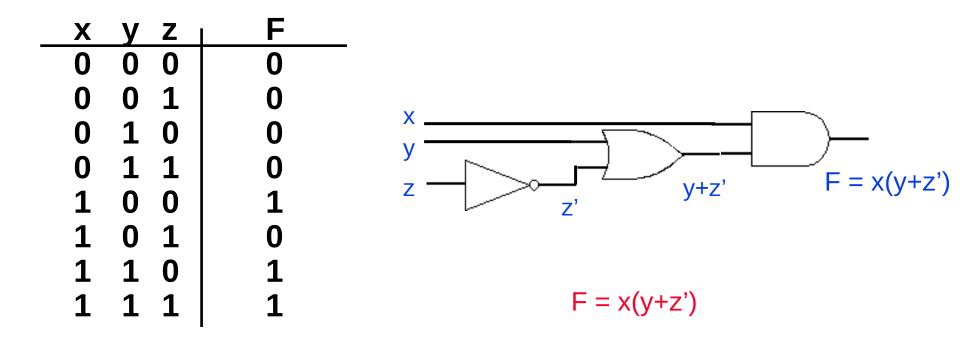
Rajeev Pandey Department Of ECE rajeevvce2007@gmail.com

## Overview

- ° Expressing Boolean functions
- <sup>°</sup> Relationships between algebraic equations, symbols, and truth tables
- $^\circ$  Simplification of Boolean expressions
- ° Minterms and Maxterms
- ° AND-OR representations
  - Product of sums
  - Sum of products

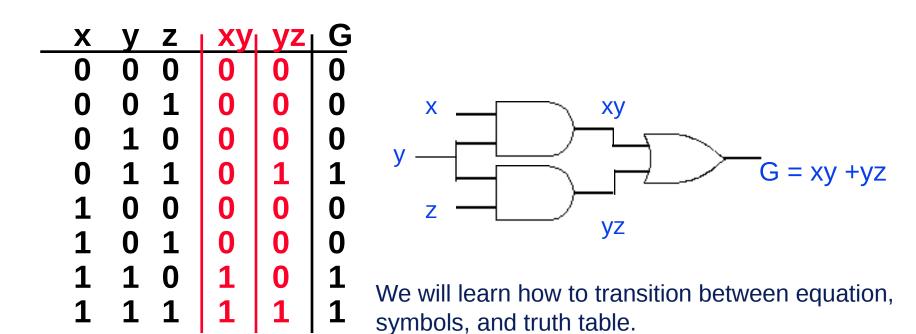
### Boolean Functions

- ° Boolean algebra deals with binary variables and logic operations.
- ° Function results in binary 0 or 1



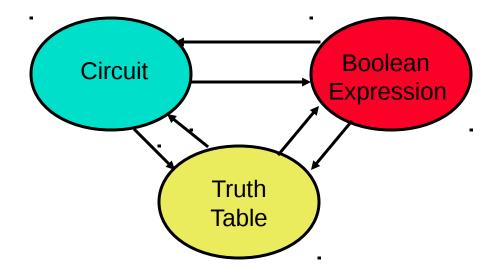
### Boolean Functions

- ° Boolean algebra deals with binary variables and logic operations.
- $^{\circ}$  Function results in binary 0 or 1



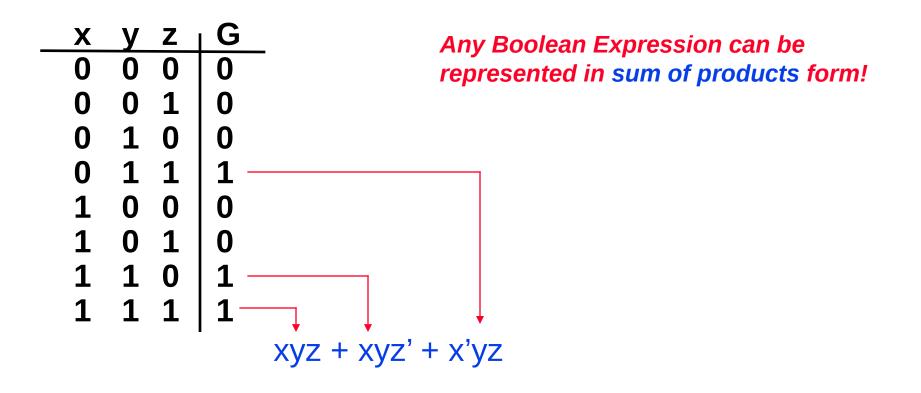
## **Representation Conversion**

- Need to transition between boolean expression, truth table, and circuit (symbols).
- ° Converting between truth table and expression is easy.
- ° Converting between expression and circuit is easy.
- ° More difficult to convert to truth table.



## **Truth Table to Expression**

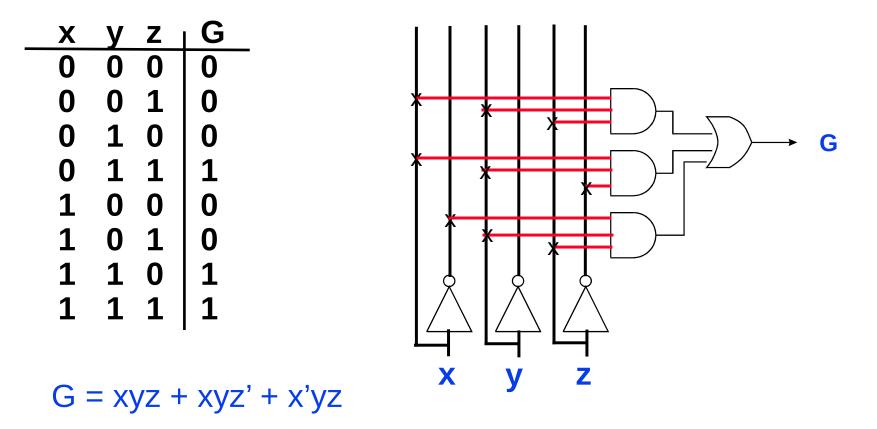
- ° Converting a truth table to an expression
  - Each row with output of 1 becomes a product term
  - Sum product terms together.



#### Equivalent Representations of Circuits All three formats are equivalent

0

 Number of 1's in truth table output column equals AND terms for Sum-of-Products (SOP)

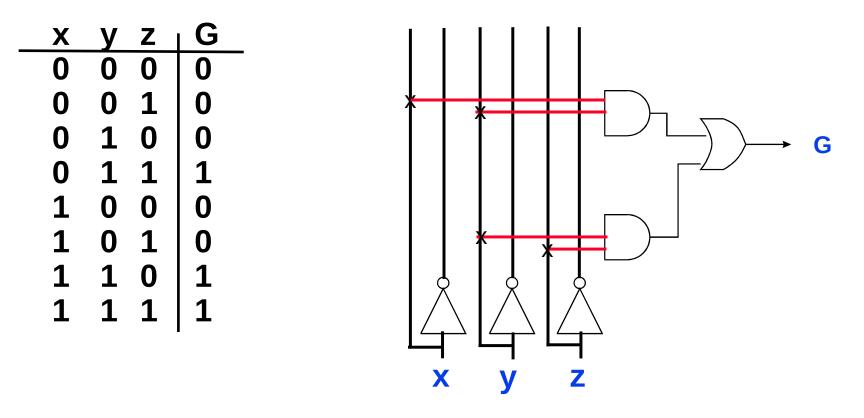


## **Reducing Boolean Expressions**

- ° Is this the smallest possible implementation of this expression? No! G = xyz + xyz' + x'yz
- <sup>°</sup> Use Boolean Algebra rules to reduce complexity while preserving functionality.
- Step 1: Use Theorum 1 (a + a = a)
  - So xyz + xyz' + x'yz = xyz + xyz + xyz' + x'yz
- Step 2: Use distributive rule a(b + c) = ab + ac
  - So XYZ + XYZ + XYZ' + X'YZ = XY(Z + Z') + YZ(X + X')
- Step 3: Use Postulate 3 (a + a' = 1)
  - so xy(z + z') + yz(x + x') = xy.1 + yz.1
- Step 4: Use Postulate 2 (a . 1 = a)
  - So xy.1 + yz.1 = xy + yz = xyz + xyz' + x'yz

# **Reduced Hardware**

- Implementation Reduced equation requires less hardware! 0
- 0 **Same function implemented!**



G = xyz + xyz' + x'yz = xy + yz

### **Minterms and Maxterms**

For example:

Minterms

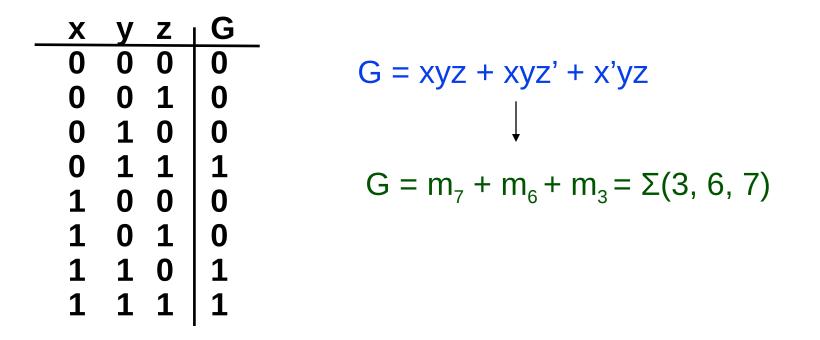
- 0 Each variable in a Boolean expression is a literal
- 0 Boolean variables can appear in normal (x) or complement form (x')
- 0 Each AND combination of terms is a minterm
- 0 Each OR combination of terms is a maxterm

For example:

**Maxterms** Minterm ХУ Ζ Maxterm X Y Z 0 0 0 X'Y'Z' m 0 0 0 X+V+ZM 0 1 0 X'V'Z m₁ 0 0 1 X+V+Z' M₁ 1 0 0 xy'z' m₄ 1 0 0 X'+Y+ZM₄ 1 1 1 XYZ  $m_7$ 1 1  $X'+Y'+Z' M_{7}$ 1

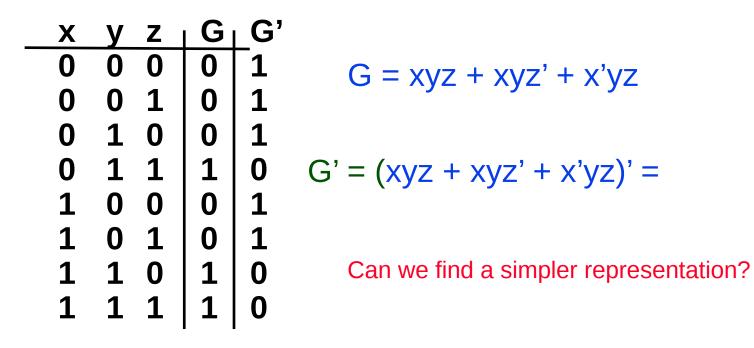
**Representing Functions with Minterms** 

- Minterm number same as row position in truth table (starting from top from 0)
- ° Shorthand way to represent functions



## **Complementing Functions**

- Minterm number same as row position in truth table (starting from top from 0)
- ° Shorthand way to represent functions



# **Complementing Functions**

- ° Step 1: assign temporary names
  - b+c->z
  - (a + z)' = G'

$$G = a + b + c$$
  
 $G' = (a + b + c)'$ 

- ° Step 2: Use DeMorgans' Law
  - (a + z)' = a'. z'
- Step 3: Resubstitute (b+c) for z
  - a'.z'=a'.(b+c)'
- ° Step 4: Use DeMorgans' Law
  - a'. (b + c)' = a'. (b'. c')
- ° Step 5: Associative rule
  - a'. (b'. c') = a'. b'. c'

G = a + b + c

G' = a' . b' . c' = a'b'c'

**Complementation Example** 

# ° Find complement of F = x'z + yz

• F' = (x'z + yz)'

# ° DeMorgan's

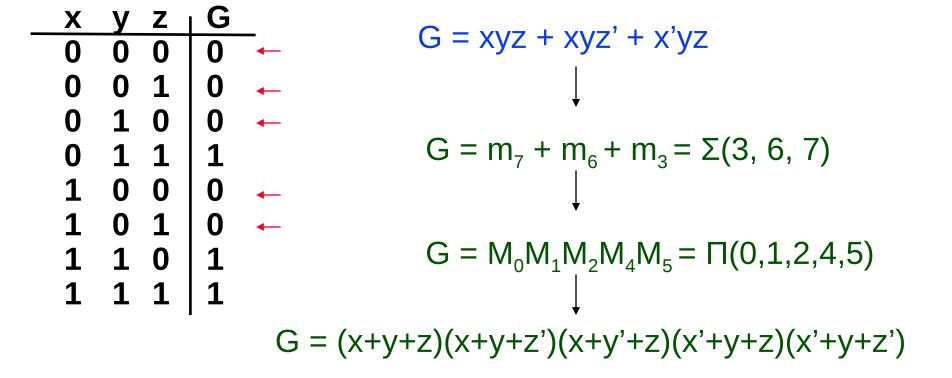
- F' = (x'z)' (yz)'
- ° DeMorgan's
  - F' = (x"+z')(y'+z')

# ° Reduction -> eliminate double negation on x

This format is called product of sums

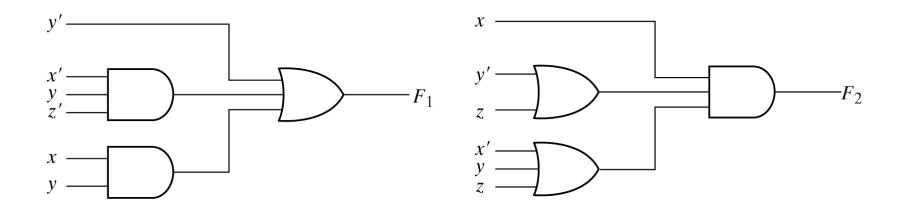
### **Conversion Between Canonical Forms**

- <sup>°</sup> Easy to convert between minterm and maxterm representations
- ° For maxterm representation, select rows with 0's



## **Representation of Circuits**

- All logic expressions can be represented in 2level format
- Circuits can be reduced to minimal 2-level representation
- ° Sum of products representation most common in industry.



(a) Sum of Products

(b) Product of Sums

Fig. 2-3 Two-level implementation

### Summary

- ° Truth table, circuit, and boolean expression formats are equivalent
- <sup>°</sup> Easy to translate truth table to SOP and POS representation
- <sup>o</sup> Boolean algebra rules can be used to reduce circuit size while maintaining function
- ° All logic functions can be made from AND, OR, and NOT
- <sup>°</sup> Easiest way to understand: **Do examples!**
- <sup>°</sup> Next time: More logic gates!